
 Page 1/8

Design and Validation of Embedded Real-Time Applications
 S. Siegl, C. Lauer

University of Erlangen-Nuremberg, Department of Computer Science 7, Erlangen, AUDI AG, Ingolstadt, Germany

Abstract: The design and validation of embedded
real-time applications is challenging, especially when
legacy sub-systems are involved. To account for the
uncertainty in system-development at early design
stages we use statistical modelling and discrete
event simulation to perform sensitivity analysis.
These analysis results provide vital information
about the system characteristics and indicate usage
scenarios where the behaviour of the system differs
significantly from the average case. Based on the
simulation results and the initial system requirements
a usage model for the application is being set up.
The model represents the requirements in an
unambiguous and traceably correct manner. For
each possible path through the model, considering
stimuli and their timing, a unique system reaction is
defined. This way the requirements are clarified. The
usage model allows the derivation of test cases that
can be used in the design phase to validate the
model and in the acceptance phase to test the final
system. Through the combination of the simulation
results and the usage modelling we are able to:

• identify critical system conditions.

• validate the system design w.r.t. the usage
model

The proposed methods are currently applied in both
the design and validation of safety critical
applications.

Keywords: Embedded Real-Time Systems, Design,
Validation, Non-functional properties, Safety-Critical

1. Introduction

More and more complex embedded applications are
developed to realize efficient and safe automotive
systems. Important design decisions have to be
made at early design stages, when performance
parameters of sub-systems are not verified and
requirements are not fully developed. However, it is
important to identify critical paths through the system
and usage scenarios that imply the fulfilment of hard
real time requirements as early as possible. Doing
so allows for an early validation of the design w.r.t.
the application requirements. Hence, design flaws
can be avoided and valuable time and money can be
saved.
Simulative approaches to scheduling analysis are a
feasible analysis technique at early design stages
and are often applied if complex scheduling
strategies and communication protocols are
deployed. In contrast to formal schedulability

analysis, parameters can be statistically influenced
and investigations from an average-case perspective
are possible. Commercial tools like the ChronSim
simulator [1] or academic tools like MAST [2], and
Cheddar [3] represent such schedule simulators.
However, only commercial tools offer facilities to
analyse automotive systems.
In this paper we focus on the analysis of statistically
influenced simulation models. Although some of the
above mentioned tools support statistical patterns for
signal arrival and task execution time latency none of
the available tool support proper simulation control
mechanisms. In order to perform statistical
simulation without output bias we implemented a
simulation model and simulation control
mechanisms.
Model-based testing makes use either of behavior
models of the SUT (system under test) or of usage
models that describe the expected usage of the SUT
[4]. Due to the fact that in the early design phase no
behavior models of the system are available we
decided to derive a usage model from the initial
requirements and simulation results. This model is
independent from the design models and represents
the requirements in a unique and correct form. It is
used to analyze and clarify the requirements, and to
validate the design and simulation in terms of
conformance with the requirements and feasibility.
In the later system testing phase the usage model is
used to automatically generate test cases from it [5].
Because exhaustive testing of real systems is hardly
feasible in practice a set of test cases is derived to
meet a given test goal. By applying a usage model
already in the design phase, the validation and
detection of design flaws happens in an early phase.
The knowledge gained in the design phase can be
used to generate sets of test cases that expose the
system to usage scenarios that are known to give
important information for the validation of the final
product.

2. Embedded Real-Time Application

ECUs in the automotive domain host multiple
applications that may be responsible for safety,
chassis, body, or diagnosis. In the safety domain,
integrated ECU architectures that perform both
active and passive safety applications are getting
increasingly popular. Figure 1 depicts a set of
example applications that may be hosted by such an
integrated architecture.
In this example a remote sensing system (e.g. radar,
laser scanner, computer-vision) perceives the

 Page 2/8

current driving context and transmits object lists to a
collision detection algorithm. In this step a metric is
evaluated which captures the certainty of an
imminent crash.

Figure 1: Example applications from the automotive
safety domain

Pro-active pedestrian protection mechanisms also
take into account the sensor data object lists as the
crash detection does not consider vulnerable road
users. The occupant safety and crash mitigation
application only react on opposing vehicles and may
activate reversible belt tensioners and brakes. The
actuator for the active pedestrian protection is an
active hood that offers an additional deformable
zone in case of an accident with pedestrians.
Integrated ECUs can contain multiple micro
controllers, ASICs, inertial sensors, and field-busses.
The architecture in figure 2 contains an ECU which
hosts two controllers connected by an SPI field-bus.
Controller 1 is connected to the remote sensing
system via a dedicated connection and controller 2 is
connected to the intra-car time-triggered bus system.
The activation of the actuators is done by controller 2
either by dedicated connections (active hood and
belt-tensioners) or via the time-triggered bus (brake).
The crash detection is allocated to controller 1. The
three safety applications are hosted by controller 2.

Figure 2: Example system architecture

In the following we will show how the concepts of
discrete event simulation and model-driven testing
based on usage models can cooperate in order to
design such systems.

3. Discrete Event Simulation

In the following we describe the model that simulates
the propagation of the application data from the
sensor to the respective actuators.

3.1 Simulation Model

The time required for the acquisition of context
information is dependent from the number of objects
in the scene, their arrangements, and object clutter.
However, the sensors are designed to supply a new
vector of objects at a certain frequency. Hence, the
sensor is modeled to generate data tokens with a
constant rate. The transmission of the sensor data is
subject to the object list size and takes between 300
and 400 µs. It is evaluated using a uniform
distribution. The processing of the object lists in the
crash detection task on controller 2 is also
dependent from the number of objects and is also
subject to preemption. The total response time of the
software tasks that run on the micro controllers is
simulated using the respective execution times,
priorities, activation offsets, and the task scheduling
strategy of the operating system. Table I
summarizes the task properties.

Table I: Properties of the real-time tasks in the
simulation model

TaskID µC Texec[ms] Tperiod[ms] Prio Toffset[ms]
CollDetect 1 uni(1,4.3) 10 3 0.7
Legacy1000 1 uni(0.18,.2) 1 2 0.4
Legacy250 1 uni(0.08,0.1) 0.25 1 0
CrashMiti 2 uni(1.6,3.9) 10 3 2.5
OccuSafe 2 uni(0.48,0.7) 5 2 1
PedeSafe 2 uni(0.6,1.7) 5 1 0

The intra-ECU SPI communication takes a constant
amount of 50 µs whereas the communication of the
application decisions via the time-triggered bus
system can only take place at a predefined time.
Time simulation of the end-to-end delay from sensor
data acquisition to result transmission is simulated
by tokens that traverse the simulation model from
source to sink (e.g. sensor to bus-interface). The
tokens are delayed at each model element according
to statistical parameters and/or scheduling behavior
of the controllers.
The performance of the safety applications is
dependent on the end-to-end delay between context
perception and actuator activation. Directly
connected actuators can be activated with little
additional delays. However, time-triggered bus
systems can cause addition delay when the
transmission time just passed before the results of
the safety applications became available. Note, that
the global communication schedules in time-
triggered architectures are defined before the local
node scheduling takes place (see chapter System
Design in [6]). The deadline in Table II represents
the instance when the data has to be available (w.r.t.
the sensor data acquisition) in order to ensure a
timely transmission via the bus system.

 Page 3/8

3.2 Output Analysis

As described before we use statistical modeling to
account for uncertainty in the system.

Table II: Timing properties of the applications w.r.t.
the sensor data acquisition

Application Tdeadl[ms] Tmin[ms] Tmax[ms] Tmedian[ms]
Crash Mitigation 28.5 13.76 18.23 16.65
Occupant Safety 12.25 6.16 11.95 11.23
Pedestrian Safety 11.5 5.27 6.31 5.7

To remove statistical bias from the results of the
output analysis we perform simulation control on
multiple experiment replications until a relative error
below 10% is achieved. The results of the
experiment are presented as box plots in figure 3.
Every application signal run contributes one data
point to the box plot. The median of the signal
latencies is well under the signal deadline for both
the crash mitigation application and the pedestrian
protection application. Furthermore, the simulated
max-values of the signal delay are lower than the
deadlines given in Table II. Although the latencies of
the occupant safety application are also under the
deadline stated above, the results suggest that
about 50% of the signal delays are under 1 ms from
their respective deadlines. At early design stages
this might be an unwanted risk. Two possible
solutions are feasible:

Figure 3: Box plots of the simulation results

1. The task scheduling on controller 2 can be

adjusted to allow for a higher priority in the
execution of task CrashMiti. This, however,
would also increase the latencies of the other
tasks, hence, resulting in higher end-to-end
latencies of the respective applications.

2. The delay caused by the crash detection
algorithm is high compared to the rest of the
signal. Deadline violations might occur at later
design stages when this processing step takes
lots of time, i.e. the algorithm has to evaluate a
large number of objects. Focusing on this very

scenario in ECU testing reduces the need for
higher safety margins at early design stages.

4. Worst-Case Response Time Analysis

So far, we focussed on the average-case
perspective of the system timing. The average-case
is important if the system perfromance is influenced
by the average signal delay and the maximum signal
jitter. However, during the development of safety or
life-critical systems the worst-case timing behavior
must not be neglected. Using discrete event
simulation to cover the worst-case timing analysis
can only be applied to a certain extent. In section 3
we have modeled the responsetime of the tasks
using a uniform distribution of execution times. For
the worst-case analysis we now have to use the
worst-case execution times of each task and derive
the exact response-time without any statistical
influence. This requires the knowledge of the full
task set and all respective task properties.

A. Simulating the Worst-Case

In a purely time-triggered system without clock drift
the worst-case delay can be simulated by either
setting up the worst-case scenario and simulating
one single message transmission, or by simulating
over the hyper-period of time and tracking the worst-
case delay. In complex systems, however, the worst-
case scenario is not necessarily known a-priori and
simulating the hyper-period of the system is more
feasible. The hyper-period P denotes the least
common multiple of all cyclic time-domains Di in the
system (equation 1).

),...,(10 −=Ρ iDDlcm (1)

In the example system consisting of two controllers
and one time-triggered communication system, this
hyper-period is the lcm of the bus period, and the
two schedule periods. Systems consisting of multiple
clock references inherently incorporate clock drifts

and drifts between the periods 10,..., −itt , hence, P has
to be calculated taking into account the clock drifts

10,..., −iττ
:

),...,(1100 −− ++=Ρ iiDDlcm ττ (2)

Unfortunately, therefore P increases
rapidly even for small numbers of
different clock references. The simulation of the
hyper-period may become computationally
infeasible, therefore, formal methods are often used
to analyze the worst-case timing of systems.

ii t<<τ

 Page 4/8

B. Asynchronous Task Scheduling Analysis

A software task that does not meet its deadline, e.g.
the transmission time of a time-triggered bus system,
may decrease the system performance and even
result in an unsafe system state. However, using
response-time analysis to validate correct timing
behavior is difficult if complex scheduling strategies
are in use. Consider the following asynchronous task
set. A task set is called asynchronous if the first
activation of an arbitrary task may be delayed by an
offset value:

Table III: Legacy airbag system task set

Task Prio WCET

[µs]
Period
[µs]

Offset
[µs]

Signal
Processing

0 8 125 23

Internal
Sensors

1 37 250 50

External
Sensors

2 440 2500 0

Belt Executive 3 5 1000 0
OS Services 5 8 250 100
Communication 6 200 5000 0
Controller_Com 7 130 5000 1100
PedeSafe 8 330 5000 0
OccuSafe 9 200 5000 1000
CrashMiti 10 1950 10000 6000
Diagnosis 11 430 10000 4000

Table III summarizes the detailled view on controller
2 in section 3. Since statistical modeling is not
feasible for worst-case analyses, we need the exact
task properties of all tasks in the system. Whereas in
section 3 we used a uniform distribution of execution
times to account for increased latency by task pre-
emption we are now able to calcuate upper bounds
of the worst-case response times for the tasks
CrashMiti, PedeSafe, and OccuSafe. To calculate
these bounds we use the response-time analysis
proposed in [7] using equation 3.

∑
∈

+ +=
transt

n WtiICiw),,(1

 (3)

With I(i, t, W) being the interference of transaction t
with activation W on task i:

[] k
ihpttrk

kt
j

ktn COW
T

OWw

WtiI

∑
∩∈

−−

 −+

=

))()((

1

0

0

ˆ
ˆ

),,(

 (4)

Equation 3 calculates the size of a busy window wn,
i.e. the time the controller evaluates tasks without
any idle moments, using a fix-point iteration. The
length of the busy window depends on the offset O
of each task w.r.t. the start of the busy window and
an assumption about the tasks that have been
activated at the instant the busy window starts
(defined by a vector W of activation times for each
ransaction; A transaction of a given activation period
contains all tasks with the respective activation
period.). Hence, for a worst-case analysis, every
possible instant when tasks may be activated have
to be evaluated in order to find the critical instalt that
leads to the actual worst-case response time. The
length of the busy window and the activation
information of the analysis task are evaluated to the
response time of the task using equation 3. For an
in-depth introduction to the schedulability analysis
please refer to [7].

)ˆ()(ikii WOwWr −−=
 (5)

In our case the resulting response-time boundaries
calculate to the ones summarized in table IV: Note,
that the times include a certain amount of pessimism
particularly if some of the tasks are not triggered by
external events but from the same clock reference.
Moreover, the computational complexity of the
presented technique is infeasible for larger task
systems with many different activation periods.
Various approximations to exact solutions have been
proposed in the literature which can be found in
[8,9,10]. The response-time analysis of the task set
presented above is calculated with the values is
table IV.

Table IV: Results of the WCRT Analysis

Task WCRT

[µs]
Signal Processing 8.0
Internal Sensors 45.0
External Sensors 591.0
Belt Executive 596.0
OS Services 567.0
Communication 889.0
Controller_Com 811.0
PedeSafe 1737.0
OccuSafe 1077.0
CrashMiti 4935.0
Diagnosis 7229.0

 Page 5/8

As can be seen from the results of the analysis, the
upper bound of the response-time of task OccuSafe
is significantly larger than the assumptions made in
section 3. Validating a response-time of under 700
µs requires a priority between 7 and 8. Changing the
priorities this way only affects the tasks OccuSafe
and PedeSafe, see table V:

Table V: Refined WCRT properties with different
priorities

Task WCRT [µs]
PedeSafe 1998.0
OccuSafe 298.0

Now, the latency of the Occupant Safety application
caused by controller 2 can be bounded to 298 µs
while the latency of the Pedestrian Safety application
will be increased. In order to validate the rest of the
timing chain starting from the sensor device and
ending at the respective actuator device we will now
focus on using the results from the simulation study
for test case generation and ECU timing validation.

5. Testing with Timed Usage Models

In the following we focus on how we can use the
results from the simulation study for test case
generation and ECU timing validation.

5.1 Timed Usage Models

Nowadays usage models are employed to describe
the possible usage of the SUT and to derive test
cases. Markov chain usage models (MCUM) are an
established way for doing so. The usage model is
basically a collection of states and transitions and it
represents the possible usage of the system [5].
It can be understood as a formal definition of all
possible actions, defined by stimulations, called the
"Inputs" and owned by the transitions. Because it
serves as a test model, transitions own also
reactions, i.e. outputs of the SUT that can be defined
as "Expected Results".
The problem was that classic MCUMs do not provide
a way to integrate time and timing systematically in
the usage model. We developed Timed Usage
Models (TUM) to overcome these drawbacks [11].
TUMs allow the integration of non-exponential
timing, either on states or on transitions, in order to
be able to describe the usage in a realistic way. The
usage model serves as test model and hence it must
be able to consider and describe real time aspects in
an appropriate manner. Usage states and transitions
can be assigned a probability density function (pdf)
over time. These pdfs are used to sample the
sojourn time in states and the execution duration of
stimuli. The variability in timing of usage and

different users can be described with usage profiles
that store the probabilities of stimuli and their timing.

A formal definition of a Timed Usage Model shall be
given: A Timed Usage Model (TUM) consists of:

• A set of states S = {s1, . . . , sn}, that
represent possible states of usage.

• A set of arcs A, representing state
transitions. An arc from state si to state sj is
denoted by aij , multiple arcs between si and
sj are not allowed.

• A set of stimuli Y on the SUT. A stimulus yj
is assigned to each arc.

• The transition probability from state i to state
j, denoted by pij for an existing arc aij .
Otherwise the transition probability pij = 0.
The transition probabilities obey the
conditions 0 ≤ pij ≤ 1 and

 ∑
=

=
n

j

ijp
1

1 ∀i = 1, . . . , n (1)

states that the probabilities of all outgoing
arcs from a certain state si must sum up to
one.

• A probability density function (pdf) ti to
reflect the sojourn time is assigned to each
state si.

• A pdf of the stimulus time tij is assigned to
each arc aij . This pdf describes the duration
of the execution of a stimulus on the SUT.
The concept provides the possibility to
characterize a stimulus by its typical
variation in time, that can be fix or variable
and vary from very small to large values.

The elements of a Timed Usage Model are
presented in Figure 4 as a graph example.

Two states have special characteristics, that are:

• State s1 is the sole initial state (also: start
state).

• State sn is the final state (also: end state).

The transition probabilities pij from state si to
state sj as well as the values of the timing attributes
ti and tij can be stored and exchanged by means of
a matrix P . This way different user types can be
distinguished w.r.t. the appliance of stimuli and the
timing of and between stimuli.
All paths from the start to the final state are
valid test cases. The statistical sampling of test
cases can be guided by different usage profiles that
represent different users or usage conditions of a
system.

 Page 6/8

Figure 4: Attributes of Timed Usage Model

5.2 Extended Automation Method (EXAM)

The test method used by the AUDI AG and within
the Volkswagen AG to perform tests at component
and system level is called EXAM, which is the
abbreviation for Extended Automation Method [12].
The test automation EXAM is available as Freeware
and can be downloaded from www.exam-ta.de .

Moreover, EXAM as it is used within the Volkswagen
AG defines a process, the roles, and the tools used
to:

• model test cases graphically and platform
independently in UML. Sequence diagrams
are used for this task and build the formal
basis for test case specifications.

• generate platform dependent test scripts
automatically from the formal description in
UML. In this way a separation between the
test case description and its concrete
implementation is achieved.

• to use sharable test automation
functionalities from a structured database.
Thus, test cases can be developed in
independent test teams and test know-how
is accumulated enterprise-wide.

EXAM provides the means for the formal
specification of platform independent test cases. Yet
in EXAM itself each test case must be invented and
created manually.
We introduced usage modeling and test case
generation from usage models in order to generate
test cases into EXAM.

5.3 Process

In this section the process for integration and system
testing is described. The process described in this
section does not expect the creation of the model in
a previous development phase. So if no model is at
hand, it can be created in this development phase.
The process is as follows: The process initializes
with a test request and the specification documents,
e.g. in natural language. In a next step the test
designer creates a usage model that formalizes the
requirements. Based on this model that

represents the requirements in a platform
independent manner test cases in the UML are
generated. In Fig. 4 this is the pictogram with ”‘Step
1, Step 2”’. EXAM generates automatically platform
specific python code from the test case
specifications. The test cases are executed on HIL
simulators and results saved in test reports.

Figure 5: Process with EXAM for HIL testing

5.4 Toolsuite

We chose All4tec MaTeLo (www.all4tec.net) for
usage modelling and test case generation. The
MaTeLo tool suite was enhanced so that the EXAM
library can be accessed from MaTeLo. Functionality
for test automation from EXAM can be associated
with usage models. This makes it possible to
generate platform independent test cases out of
MaTeLo. In a next step these test cases can be
executed on a test-bench. We executed test cases
on HIL simulators.
MaTeLo owns a "Requirements library" allowing
associations of requirements to the model objects.
The aim is to link the test model with the
requirements and to insure the requirements
validation during the test campaign. During the
creation of the model it is possible to associate at
each step from which requirement it is derived. This
way the analysis of requirements is supported by the
tool.

5.5 Validation of the Requirements and Simulation
Results

The creation of the TUM is a very important task, as
the model is used as a basis to assess the chosen
design and to derive test cases. Already during the
creation of the model the requirements are analyzed
and brought into a unique and traceably correct
representation. To form a valid representation of the
requirements, the TUM is constructed using
principles of sequence-based software specification.
It consists of the following steps:

 Page 7/8

1) Identify the system boundary
2) Enumerate all sequences of stimuli and

their responses across the system
boundary

By this procedure, a complete and consistent usage
model is created. An additional feature is the easy
traceability of requirements. Beside the annotation of
the response to each stimuli sequence the
corresponding requirement is assigned. This
ensures the correctness of the model and the
detection of incomplete and inconsistent
requirements.
If no requirement or desired system response is
found for a sequence this has to be documented and
a requirement has to be derived. So this procedure
describes a technique to analyze the requirements.
The results of the simulation, the discovered
anomalous and critical paths, are compared with the
desired reaction implied by the requirements and the
usage model. Furthermore, the TUM can be used to
review the simulation. The TUM provides the basis
for a systematic identification of scenarios that are
critical from usage point of view. It can be a result of
the simulation that from a system point of view these
scenarios are not critical.

6. Case Study

6.1 Timed Usage Model of Safety Application

In Figure 4 the top level of the usage model is
presented. In the beginning initial conditions to set
the applications active are set. Next all inputs that
affect the application under development are
structured by transitions. Each transition represents
one interface of the application. Equivalence classes
of input data are defined. Each interface acts at a
predefined abstraction level, e.g. one that stimulates
the object lists. This way it is possible to
systematically define the desired system reaction for
each combination of classes. This is done in the
macrostate Check Subsystems. In this state the
desired reaction of all subapplications, such as
collision detection and reversible belt pretensioners
are specified. From this state it is possible to finish
the scenario or to modify the input parameters. As
maximum delays for the system reaction the values
from the simulation were taken.

Figure 6: Top level of Usage Model

Usage scenarios that were identified critical by the
simulation are generated from the usage model. The
specified system reaction from the usage model is
compared with the results of the simulation. In the
case of a complex application the validation of the
simulation is not a trivial task. Compliance test cases
can be generated from the usage model to assess
the design of the system.

6.2 Test Case Generation

HIL simulators are an established test bench in
industry and allow the testing of embedded
applications under real conditions. The main focus
is functional testing to detect design flaws or
erroneous implementations. However, the high
acquisition and working costs of HIL systems require
many departments to share a single HIL for
validation and testing of different applications.
Therefore, testing time is scarce and should be used
as efficiently as possible.

Using MaTeLo Testor it is possible to control the test
generation using various parameters and selecting
the appropriate test strategy. Currently two families
of algorithms are available and can be configured for
test case generation:

• Usage oriented: These algorithms use the
probabilities of the chosen test profile. The
generation is controlled via the model
architecture and the probabilities given by
the profile. Test cases that are sampled from
test profiles that represent usage can be
used to estimate the reliability of the SUT.
This way a stopping criterion for testing can
be defined. This algorithmic family provides

 Page 8/8

also the possibility to generate test cases for
boundary testing of equivalence classes.

• Coverage: This algorithm can be used to
generate a set of test cases in which each
transition of the model is covered at least
once. This algorithm allows the validation of
the SUT against recurrent failures. Results
of test cases from the coverage algorithm
can be used to have a basic indicator about
the proper functioning of the SUT.

Currently All4tec Testor is enhanced to provide an
API for test case generation strategies. This API
makes it possible within Volkswagen AG to develop
and use proprietary test case generation strategies
that can e.g. generate an optimized set of test cases
to meet a certain test purpose. Test generation
strategies are currently being developed by the
author and base on the concepts presented in [11].
Indicators and test management information are
integrated in the model that are used by the test
generation strategies.

6.3 Results of case study

With our approach design flaws are detected in early
phases of the development. Knowledge about usage
scenarios that are of high significance to assess the
correct behavior of the application is accumulated
during the design phase. These are e.g. scenarios
with a large number of objects in the vehicle’s
environment. This knowledge can be used to
generate a set of test cases for efficient HIL-testing.
This way information from the design phase is
passed to the system- and acceptance testing phase
and helps to improve the final validation steps.

7. Conclusions

In order to investigate the performance metrics of an
embedded real-time application at an early design
stage, we conduct discrete event simulation with
statistical models. The simulation model comprises
of automotive specific communication and
scheduling protocols and statistical bias is avoided
by proper simulation control. The results of the
output analysis are then used in the usage model-
based test method. Combining the two approaches
enables us to:

• identify critical usage scenarios that may
represent an unwanted risk in the product
development.

• validate the correct system behavior w.r.t.
the usage model, hence, reducing the risk of
a costly redesign at later design stages.

Currently Timed Usage Models are created for
safety applications, energy management, and air

conditioning of vehicles. Systematically derived test
cases give valuable information about scenarios that
should be covered by test cases. Knowledge from
the design phase supports this process.
Applying model-based analysis and validation
techniques at the system design phase supports a
more systematic engineering process and helps to
build products of higher quality.

6. References

[1] T. Kramer and R. Münzenberger: "New Functions,
New Sensors, New Architectures – How to Cope
with the Real-Time Requirements", Advanced
Microsystems for Automotive Applications Smart
Systems for Safety, Sustainability, and Comfort,
page 435, 2009

[2] M.G. Harbour, J.J. Gutierrez, J.C. Palencia, and
J.M. Drake: "Mast: Modeling and Analysis Suite for
Real-Time Applications", Proceedings of the
Euromicro Conference on Real-Time Systems,
Delft, The Netherlands, 2001.

[3] F. Singhoff, J. Legrand, L. Nana, and L. Marcé.:
“Cheddar: a flexible real time scheduling
framework”, ACM SIGAda Ada Letters, 24(4):1–8,
2004.

[4] S. Rosaria and H. Robinson: “Applying models in
your test-ing process”, Information and Software
Technology, 42:815–824, 2000.

[5] S. Siegl, V. Entin, R. German, G. Kiffe: “Model
Driven Testing with Time Augmented Markov Chain
Usage Models - Computations and Test Case
Generation Algorithms for Time Augmented Markov
Chain Usage Models“, ICSOFT (1) 2009: 202-207

[6] H. Kopetz: “Real-time Systems: Design Principles
for Distributed Embedded Applications”, Springer,
1997.

[7] K.-W. Tindell. Using offset information to analyse
static priority preemptively scheduled task sets.
University of York, Department of Computer
Science, 1992

[8] J. Mäki-Turja and M. Nolin. Efficient implementation
of tight responsetimes for tasks with offsets. Real-
Time Systems, 40(1):77–116, 2008.

[9] J.C. Palencia and MG Harbour. Offset-based
response time analysis of distributed systems
scheduled under EDF. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems,
pages 3–12, 2003.

[10] R. Pellizzoni and G. Lipari. A New Sufficient
Feasibility Test for Asynchronous Real-Time
Periodic Task Sets. In Proceedings of the 16th
Euromicro Conference on Real-Time Systems,
pages 204–211, 2004.

[11] S. Siegl and R. German, “Model Driven Testing
with Timed Usage Models in the Automotive
Domain,” in ISSRE 2009. IEEE Computer Society

[12] G. Kiffe, EXtended Automation Method (EXAM)
Konzeptpapier Version 3.0, Audi AG, Ingolstadt,
Mai 2009. [Online]. Available: http://www.exam-
ta.de .

